Synthesis and structures of [2.n]metacyclophane-1,2-diones

Tatsunori Saisyo, Mikiko Shiino, Tomoe Shimizu, Arjun Paudel and Takehiko Yamato*
Department of Applied Chemistry, Faculty of Science and Engineering, Saga University, Honjo-machi 1, Saga 840-8502, Japan

Abstract

McMurry cyclisation of 1,n-bis(5-formyl-2-methoxyphenyl)alkanes afforded dimethoxy[2.n]metacyclophan-1-enes and dimethoxy[2.n]metacyclophane-1,2-diols, in which latter one was converted to dimethoxy[2.n]metacyclophane-1,2-diones by Albright-Goldman oxidation.

Keywords: cyclophanes, McMurry reaction, [2.n]metacyclophane-1,2-diol, conformation, oxidation, 1,2-diketones

For many years various research groups have been attracted by the chemistry and spectral properties of the [2.2]MCP $([2.2] \mathrm{MCP}=[2.2]$ metacyclophane $)$ skeleton. ${ }^{1-3}$ Its conformation, which was elucidated by X-ray measurements, ${ }^{4}$ is frozen into a chair-like non-planar form. Many attempts have been made directly to introduce functional groups into the methylene groups of [2.2]MCPs, but these have failed because of the deviation of the benzyl carbon atom from the plane of the benzene ring. ${ }^{5-11}$

Singler and Cram ${ }^{12}$ have reported that bromination of [2.2]paracyclophan-1-ene with bromine affords the corresponding cis-adduct. Recently, we have reported that di-tert-butyldimethyl[2.n]MCP-1-enes were treated with an equimolar amount of benzyltrimethylammonium tribromide ($\mathrm{BTMA} \mathrm{Br}_{3}$) in methylene dichloride to afford the cis-adducts to the bridged double bond. ${ }^{13-16}$ This result indicates the first success in the introduction of two bromo groups into the methylene groups of dimethyl[n.2]MCPs. We have extended the novel reaction mentioned above and reported on the acetolysis of bromine adducts with silver acetate in acetic acid and the conversion to dimethyl[2.n]MCP-1,2-diones via hydrolysis followed by Swern oxidation of the dihydroxy derivatives. ${ }^{17}$

However, we have not yet succeeded in preparing [2.2]MCP-1,2-dione due to the novel transannular reaction arising from the electronic interaction between two benzene rings, the proximity of the 8,16 -positions and the release of the considerable strain energy to form the more stable annulene π-electron system, $10 \mathrm{~b}, 10 \mathrm{c}$-dihydropyrene. Thus, the reaction of 5,13-di-tert-butyl-8,16-dimethyl[2.2]MCP-1-ene ${ }^{13}$ with bromine affords 4,5,9,10-tetrabromo-2,7-di-tert-butyl-trans-10b,10c-dimethyl-10b,10c-dihydropyrene in good yield, but not the adduct to the bridged double bond, which can be converted to the corresponding [2.2]MCP-1,2-dione. ${ }^{14}$

On the other hand, in cyclophane chemistry, the reductive coupling of carbonyl compounds by low-valent titanium, the McMurry reaction, ${ }^{18-21}$ has been used before by Mitchell and Weerawarna ${ }^{22}$ to synthesise cyclophanes with glycol units as bridges, by Tanner and Wennerström, ${ }^{23}$ and recently by Hopf and Mlynek, ${ }^{24}$ and Grützmacher and Neumann ${ }^{25}$ for a cyclisation of suitable dialdehydes to yield unsaturated cyclophanes. Thus, there is substantial interest in the developing a more convenient preparation of [2.n]MCP-1enes or 1,2-diols than the conventional sulfur method. ${ }^{13-16} \mathrm{We}$ report here on the use of the McMurry coupling reaction to prepare a series of [2.n]MCP-1,2-diols and their conversion to 1,2-diones by Albright-Goldman oxidation. ${ }^{26}$

Results and discussion

Preparation of dimethoxy[2.n]MCP-1-enes 4 and [2.n]MCP-1,2-diols 5 was carried out by following our recent reported procedure by using the tert-butyl group as a positional protective group on the aromatic ring (Scheme 1). ${ }^{27-29}$

[^0]Thus, the $\mathrm{AlCl}_{3}-\mathrm{MeNO}_{2}$-catalysed trans-tert-butylation of $\mathbf{1}$ in benzene at $50^{\circ} \mathrm{C}$ for 12 h afforded $1, n$-bis(2methoxyphenyl)alkanes $\mathbf{2}$ in good yield. The TiCl_{4} formylation of compounds 2 with dichloromethyl methyl ether at $20^{\circ} \mathrm{C}$ gave the desired $1, n$-bis(5-formyl-2-methoxyphenyl)alkanes 3 in good yield. 1,3-Bis(5-formyl-2-methoxylphenyl)propane (3a) was subjected to reductive coupling by the McMurry reaction following the improved Grützmacher's procedure. ${ }^{25}$ Thus, the reductive coupling reaction of 3a carried out using $\mathrm{TiCl}_{4}-\mathrm{Zn}$ in the presence of pyridine in refluxing THF under the high dilution conditions afforded the disired compound 6,13-dimethoxy[2.3]MCP-1-ene (4a) in 23% along with 1,2-dihydroxy-6,13-dimethoxy[2.3]MCP (5a) in 65% yield. Surprisingly, when the present cyclisation reaction was carried out in the absence of pyridine, the yield of $4 \mathbf{a}$ increased to 69%. This result was quite different from that of the similar McMurry cyclisation of 1,3-bis(5-acetyl-2-methoxyphenyl)propane, which afforded the corresponding [3.1]MCP by the TiCl_{4} or acids induced pinacol rearrangements. ${ }^{32-34}$ Similarly, 6,14-dimethoxy[2.4]MCP-1-ene $\mathbf{4 b}$ and 1,2-dihydroxy-6,14dimethoxy[2.4]MCP 5b were prepared by the McMurry reaction in 36 and 53% yields, respectively. Interestingly, the increased and preferential formation of [2.4]MCP-1-ene syn-4b in 36% yield was observed in the similar McMurry cyclisation of bis(formyl)diphenylbutane 3b. With increasing the length of the one methylene bridge the higher yield of [2.n]MCP-1-ene was obtained. This finding seems to support the notion that the strain of the [2.4]MCP-1-ene compared to the higher [2.3]MCP-1-ene decreases as the length of the one methylene bridge increases.

The structures of $\mathbf{4}$ and $\mathbf{5}$ were elucidated based on their elemental analyses and spectral data. Especially, the mass spectral data for $\mathbf{4 a}$ and $\mathbf{5 a}\left(\mathrm{M}^{+}=280\right.$ for $\mathbf{4 a}$ and 314 for $\left.\mathbf{5 a}\right)$ strongly supports the cyclic structure. [2.n] MCPs can adopt either a "stair-case" anti conformation or a syn conformation with overlaying aromatic rings (Fig. 1)..35,36 Depending on the size of the bridges and on the presence of intraannular substituents, the interconversion between the syn and anti conformers occur by ring flipping. ${ }^{35,36}$ The conformation of 4 was readily apparent from its ${ }^{1} \mathrm{H}$ NMR spectrum. Thus, the internal aromatic proton shows an upfield shift ($\delta 5.95$ ppm) due to the ring current of the opposite benzene ring. ${ }^{37,38}$ The ${ }^{1} \mathrm{H}$ NMR spectrum of the [2.3]MCP-1-ene 4a prepared in the present paper shows that its structure corresponds exclusively to the anti-conformer. In addition, the protons of the trimethylene bridge give rise to two multiplets centred at $\delta=2.35$ and 1.95 ppm , respectively, providing a fast interconversion of the two anti conformations of $\mathbf{4 a}$ by ring flipping. However, as the temperature of the solution in $\mathrm{CDCl}_{3} / \mathrm{CS}_{2}(1: 3)$ is decreased, a single peak of the benzyl protons splits into two multiplets at $\delta 1.98$ and 2.95 ppm below $10^{\circ} \mathrm{C}$. The energy barrier to the conformational ring flipping estimated from the coalescence temperature $\left(T_{c}\right)$ is $12.8 \mathrm{kcal} \mathrm{mol}^{-1}$. We have assigned the structure of $\mathbf{5 a}$ in a similar fashion. Thus, the structure of the anti-confomer is also readily assigned from the chemical shift of the internal

Scheme 1

anti-conformation

syn-conformation

Fig. 1 Possible conformations of [2.n]metacyclophanes.
aromatic protons as a doublet at $\delta 5.95 \mathrm{ppm}(J=2.4 \mathrm{~Hz})$. The other two aromatic protons was observed at $\delta 6.80$ and 7.39 ppm ; the latter protons are in a strongly deshielding region of oxygen atom of endo- OH on ethylene bridge. These observations are strongly supported that the two OH groups are endo, endo-arrangement and therefore, 5a is found to be trans-diol.

In contrast, in the case of $\mathbf{4 b}$, the above up-field shift of the internal aromatic proton was not observed and shifted to lower field at $\delta 7.55 \mathrm{ppm}$ due to the deshielding effect from the bridged double bond. This observation strongly suggests $\mathbf{5 b}$ adopts syn-conformation different from that in $\mathbf{5 a}$.

Although Mitchell and Weerawarna ${ }^{22}$ reported the first preparation of [2.2]MCP-1,2-dione from oxidation of the corresponding [2.2]MCP-1,2-diol, the physical and chemical properties have not established so far. Thus, there is substantial interest in the oxidation of [2.n]MCPs 4 having a 1,2-diol to afford [2.n]MCP-1,2-diones. An attempted oxidation of the trans-diol 5a to the 1,2-dione 7a with PCC (pyridinium chlorochromate) carried out in a methylene dichloride solution under the same reaction conditions as described above failed. Only the cleavage reaction product, the dicarboxylic acid 8a, was obtained in quantitative yield. This finding seems to support the strained nature of the diketone 7a. Swern oxidation ${ }^{39}$ of $\mathbf{5 a}$ using DMSO and oxalyl chloride in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-60^{\circ} \mathrm{C}$ only afforded [2.2]MCP monoketone $\mathbf{6 a}$ in only 30% yield along with the ring cleavage reaction product $8 \mathbf{8}$ and the starting compound $\mathbf{5 a}$ in 20 and 50% yields, respectively (Scheme 2, Table 1). Prolonged reaction time to 24 h at room temperature under the same reaction conditions resulted only a mixture of the [2.3]MCP monoketone $\mathbf{6 a}$ and the dicarboxylic acid 8a in almost same ratio.

This finding seems to support the strained nature of the diketone 7a compared to the monoketones 6a, in spite of these having the same ring size. Fortunately, the Albright-Goldman ${ }^{26}$ oxidation of $\mathbf{5 a}$ with $\mathrm{DMSO}-\mathrm{Ac}_{2} \mathrm{O}$ at room temperature for 20 h succeeded in affording the desired [2.3]MCP diketone in

Table 1 Oxidation of [2.n]metacyclophan-1,2-diols 5

Run	Substrate	Reagents	Time (h)	Products (\% yield) ${ }^{\text {a }}$		
				6	7	8
1	5 a	PCC	1	0	0	100
2	5a	DMSO-(COCl) ${ }_{2}{ }^{\text {b }}$	1	30	0	20
3	5 a	DMSO- $\mathrm{Ac}_{2} \mathrm{O}$	20	0	$35^{\text {c }}$	0
4	5b	DMSO- $\mathrm{Ac}_{2} \mathrm{O}$	20	0	61	0

${ }^{a}$ alsolated yields are shown in parenthesis. ${ }^{b}$ The starting compound 5 a was recovered in 50% yield. ${ }^{\text {I }}$ Isolated by the reaction of 0 phenylenediamine to afford [2.3]metacyclophane 9a having a quinoxaline skeleton.

Scheme 2

35% yield along with the starting compound 5a. However, this diketone $7 \mathbf{a}$ was found to be quite labile under treatment by silica gel column chromatrography and on refluxing in toluene to afford dicarboxylic acid $\mathbf{8 a}$ in quantitative yield. Thus, a trapping reaction of diketone 7a with o-phenylenediamine was attempted, in which the crude diketone 7a was treated with o-phenylenediamine in ethanol at room temperature for 24 h to afford in almost quantitative yield the desired [2.3]MCP 9a having a quinoxaline skeleton (Scheme 3).

In contrast, in the case of [2.4]MCP, similar AlbrightGoldman oxidation of the trans-diol 5b also succeeded in affording the desired diketone 7 b in 61% yield, as stable yellow prisms. This finding seems to support the notion that the strain of the [2.3]diketone $7 \mathbf{a}$ compared to $[2.4] \mathrm{MCP}$ diketone 7b increases as the length of the one methylene
bridge decreases.
The structures of the diketones $\mathbf{7 a}-\mathbf{b}$, were assigned on the basis of elemental analyses and spectral data. The internal methoxy protons and aromatic protons in the ${ }^{1} \mathrm{H}$ NMR spectrum and the carbonyl frequency in the IR spectrum are tabulated along with the reference compound benzil $\mathbf{1 0}$ in Table 1.

In the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{7 a}$, the internal proton $\left(\mathrm{H}_{\mathrm{A}}\right)$ shows an upfield shift ($\delta 6.12 \mathrm{ppm}$ as a doublet, $J=1.0 \mathrm{~Hz}$) due to the ring current of the opposite benzene ring. Thus, its structure corresponds exclusively to the anti-conformer. The two aromatic protons $\left(\mathrm{H}_{\mathrm{B}}\right.$ and $\left.\mathrm{H}_{\mathrm{C}}\right)$ were observed at δ 7.84 (a doublet, $J=8.3 \mathrm{~Hz}$) and 6.92 ppm (double doublets, $J=1.0,8.3 \mathrm{~Hz}$); the former protons are in a strongly deshielding region of oxigen atom of the bridged carbonyl

Scheme 3

Table 2 Spectral data of [2.n]MCP-1,2-diones (7a-b) and reference compound (10) ${ }^{\text {a }}$

Compound	Number of methylene Units, n	Aromatic protons	H_{A}	H_{B}	
		6.12	7.84	IR, v (c=0) [cm	
7a	3	7.51	8.18	H_{C}	Conformation

${ }^{\text {D }}$ Determined in CDCl_{3} by using SiMe_{4} as a reference and expressed in ppm.
group. In contrast, in the case of $\mathbf{7 b}$, the aromatic proton $\left(\mathrm{H}_{\mathrm{A}}\right)$ was observed at $\delta 7.51$ (a doublet, $J=2.4 \mathrm{~Hz}$). This observation strongly suggests that 7b adopts syn-conformation. This finding indicates the different conformation is possible in the [2.4]MCP-1,2-dione 7b as the length of the one methylene bridge increases from the [2.3]MCP-1,2-dione 7a. We also observed one of the aromatic protons $\left(\mathrm{H}_{\mathrm{B}}\right)$ to be deshielded by the carbonyl group on the ethylene bridge resulting in a downfield shift ($\delta 8.18 \mathrm{ppm}$).

The higher frequency of $\mathrm{C}=\mathrm{O}$ stretching vibration in the IR spectrum for $[2.4] \mathrm{MCP}$-1,2-dione $7 \mathbf{a}$ (1685 cm^{-1}) in comparison with that for the reference compound benzil $10\left(1662 \mathrm{~cm}^{-1}\right)$ presumably reflects the deviation of the carbonyl group from the plane of the benzene ring rather than conjugation between the carbonyl group and the benzene ring. This finding is similar to those for the strained [2.2]paracyclophan-1-ones ${ }^{12,40,41}$ for which absorptions are toward wavelengths characteristic of unconjugated ketones due to the expanded $\mathrm{O}-\mathrm{C}-\mathrm{C}$ bond angles. Similar higher frequency was observed in the higher [2.4]MCP-1,2-dione 7b ($1667 \mathrm{~cm}^{-1}$), but by increasing one methylene bridge, the $\mathrm{C}=\mathrm{O}$ stretching vibration becomes to appear at the normal positions in [2.4]MCP-1,2-dione 7b.

Conclusion

In conclusion, we have developed a convenient preparation of a series of syn- and anti-[2.n]MCP-1-enes 4 and [2.n]MCP-1,2-diols 5 by a McMurry cyclisation of $1, n$-bis(5-formyl-2methoxyphenyl)alkanes 3. Also, [2.n]MCP-1,2-diols 5 were converted to the 1,2-diones 7 by Albright-Goldman oxidation. Further studies on the chemical properties of the diketones 7 are now in progress.

Experimental

${ }^{1} \mathrm{H}$ NMR spectra were recorded at 300 MHz on a Nippon Denshi JEOL FT-300 NMR spectrometer in deuteriochloroform with $\mathrm{Me}_{4} \mathrm{Si}$ as an internal reference. IR spectra were measured as KBr pellets on a Nippon Denshi JIR-AQ2OM spectrometer. Mass spectra were obtained on a Nippon Denshi JMS-HX110A Ultrahigh Performance Mass Spectrometer at 75 eV using a direct-inlet system. Elemental analyses were performed by Yanaco MT-5.

Materials

Preparations of $1, n$-bis(5-tert-butyl-2-methoxyphenyl)alkanes $\mathbf{1}$ was previously described. ${ }^{30,31}$

Trans-tert-butylation of $\mathbf{1 a}$ to give
2a: To a solution of $\mathbf{1 a}(2.21 \mathrm{~g}, 6.0 \mathrm{mmol})$ in benzene $\left(16 \mathrm{~cm}^{3}\right)$ was added a solution of anhydrous aluminum chloride $(1.60 \mathrm{~g}, 12.0 \mathrm{mmol})$ in nitromethane ($3.2 \mathrm{~cm}^{3}$). After the reaction mixture was stirred for 12 h at $50^{\circ} \mathrm{C}$, the reaction was quenched by the addition of 10% hydrochloric acid, and the solution was washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was chromatographed over silica gel (Wako C-300, 300 g) with hexane-benzene ($1: 1$) as eluent to give crude 2a as a colourless solid. Recrystallisation from petroleum ether gave 1,3-bis(2-methoxyphenyl)propane (2a) (1.0 g , 65%) as a colourless prisms, m.p. $63-65^{\circ} \mathrm{C} ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}: 3000$, 2939, 2856, 1601, 1588, 1494, 1466, 1434, 1325, 1291, 1242, $1174,1158,1049,1026,927,828,756 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.83-1.95(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right), 2.67\left(4 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right)$, $3.77(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.79-6.88(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.12-7.17(4 \mathrm{H}, \mathrm{m}$, $\mathrm{Ar} H)$; $m / z: 256\left(\mathrm{M}^{+}\right)$(Found: C, 79.45; H, 7.58. $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{2}$ (256.34) requires $\mathrm{C}, 79.65 ; \mathrm{H}, 7.86 \%)$.

2b: Prepared as described for 2a in 92% yield. 1,4-Bis(2-methoxyphenyl)butane (2b) was obtained as colourless prisms (petroleum ether); m.p. $74-76^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}: 3000,2939,2856,1601$, 1588, 1494, 1466, 1434, 1325, 1291, 1242, 1174, 1158, 1049, 1026, 927, 828, $756 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.61-1.67\left(4 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right)$, $2.64\left(4 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right), 3.80(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 6.81-$ $6.89(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.11-7.18(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H) ; m / z: 270\left(\mathrm{M}^{+}\right)$(Found: $\mathrm{C}, 80.23 ; \mathrm{H}, 8.33 . \mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{2}$ (270.37) requires $\mathrm{C}, 79.96 ; \mathrm{H}, 8.20 \%$).

3a: To a solution of $2 \mathrm{a}(1.15 \mathrm{~g}, 4.5 \mathrm{mmol})$ and $\mathrm{Cl}_{2} \mathrm{CHOCH}_{3}$ $\left(1.14 \mathrm{~cm}^{3}, 12.6 \mathrm{mmol}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ was added a solution of
$\mathrm{TiCl}_{4}\left(3.0 \mathrm{~cm}^{3}, 27.3 \mathrm{mmol}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. After the reaction mixture was stirred at room temp. for 1 h , it was poured into a large amount of ice/water ($50 \mathrm{~cm}^{3}$) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(2 \times 20 \mathrm{~cm}^{3}\right)$. The combined extracts were washed with water, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was chromatographed over silica gel (Wako C-300, 200 g) with benzene as eluent to give 3a ($914 \mathrm{mg}, 65 \%$) as a colourless solid. Recrystallisation from hexane gave 1,3-bis(5-formyl-2-methoxyphenyl)propane 3a as colourless prisms, m.p. $82-84^{\circ} \mathrm{C}$; $\mathrm{v}_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1679(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.90-1.96\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right), 2.71(4 \mathrm{H}, \mathrm{t}$, $\left.J=7.8 \mathrm{~Hz}, \mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right), 3.91(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.91(2 \mathrm{H}, \mathrm{d}$, $J=7.8 \mathrm{~Hz}, \mathrm{Ar} H), 7.70(2 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}, \mathrm{Ar} H), 7.72(2 \mathrm{H}, \mathrm{dd}, J=2.0$, $7.8 \mathrm{~Hz}), 9.86(2 \mathrm{H}, \mathrm{s}, \mathrm{CHO}) ; ~ m / z: 312\left(\mathrm{M}^{+}\right)$(Found C, 72.85; H, 6.55. $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{4}$ (312.37) requires C, $73.06 ; \mathrm{H}, 6.45 \%$).

3b: Prepared as described for 3a in 95% yield. 1,4-Bis(5-formyl-2-methoxyphenyl)butane (3b) was obtained as colourless prisms (petroleum ether); m.p. $95-97^{\circ} \mathrm{C} ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1679(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.61-1.18\left(4 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right), 2.69(4 \mathrm{H}, \mathrm{t}$, $\left.J=8.7 \mathrm{~Hz}, \mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right), 3.96(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.94(2 \mathrm{H}, \mathrm{d}$, $J=8.3 \mathrm{~Hz}, \mathrm{Ar} H), 7.67(2 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}, \operatorname{Ar} H), 7.70(2 \mathrm{H}, \mathrm{dd}$, $J=2.0,8.3 \mathrm{~Hz}, \mathrm{Ar} H), 9.85(2 \mathrm{H}, \mathrm{s}, \mathrm{CHO}) ; m / z: 326\left(\mathrm{M}^{+}\right)$(Found C, $73.53 ; \mathrm{H}, 6.89 . \mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4}(326.4)$ requires C, $73.59 ; \mathrm{H}, 6.79 \%$).

McMurry coupling reaction of $\mathbf{3}$

The McMurry reagent was prepared from $\mathrm{TiCl}_{4}\left[23.8 \mathrm{~g}\left(13.8 \mathrm{~cm}^{3}\right)\right.$, $125 \mathrm{mmol}]$ and Zn powder ($18 \mathrm{~g}, 275 \mathrm{mmol}$) in dry THF ($500 \mathrm{~cm}^{3}$) under nitrogen. A solution of 1,3-bis(5-formyl-2methoxyphenyl)propane 3a ($2.81 \mathrm{~g}, 9.0 \mathrm{mmol}$) and pyridine ($22.8 \mathrm{~cm}^{3}, 200 \mathrm{mmol}$) in dry THF ($250 \mathrm{~cm}^{3}$) was added within 60 h to the black mixture of the McMurry reagent by using a highdilution technique with continuous refluxing and stirring. The reaction mixture was refluxed for additional 8 h , cooled to room temperature, and treated with aqueous $10 \% \mathrm{~K}_{2} \mathrm{CO}_{3}\left(200 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 200 \mathrm{~cm}^{3}\right)$. The combined extracts were washed with water, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was chromatographed over silica gel (Wako C-300, 300 g) with hexane-benzene ($2: 1$) and $\mathrm{CHCl}_{3}-\mathrm{EtOAc}$ ($1: 1$) as eluents to give $\mathbf{4 a}(590 \mathrm{mg}, 23 \%)$ and $\mathbf{5 a}(1.84 \mathrm{~g}, 65 \%)$ as a colourless solid, respectively.
6,13-Dimethoxy[2.3]metacyclophan-1-ene 4a: Colourless prisms (from methanol), m.p. $133-135^{\circ} \mathrm{C} ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2936,2898$, 2833, 1601, 1496, 1438, 1288, 1248, 1187, 1127, 1032, 948, 815, $783 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 27^{\circ} \mathrm{C}\right) 1.93-1.98\left(2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right), 2.35$ $\left(4 \mathrm{H}\right.$, broad s, $\left.\mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right), 3.82(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 5.95(2 \mathrm{H}, \mathrm{d}$, $J=2.4 \mathrm{~Hz}, \mathrm{Ar} H), 6.58(2 \mathrm{H}, \mathrm{s}, C H), 6.68(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}$, $\mathrm{Ar} H), 6.93(2 \mathrm{H}, \mathrm{dd}, J=2.4,8.2 \mathrm{~Hz}, \mathrm{Ar} H) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} / \mathrm{CS}_{2}, 1: 3\right.$, $\left.-40^{\circ} \mathrm{C}\right)$ 0.82-0.92 $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right), 1.71-0.84(1 \mathrm{H}, \mathrm{m}$, $\mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}$), 1.93-2.03 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}$), $2.90-3.02$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right), 3.82(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 5.95(2 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}$, $\mathrm{Ar} H), 6.58(2 \mathrm{H}, \mathrm{s}, C H), 6.68(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{ArH}), 6.93(2 \mathrm{H}$, dd, $J=2.4,8.2 \mathrm{~Hz}, \mathrm{Ar} H) ; m / z: 280\left(\mathrm{M}^{+}\right)$(Found C, 81.32; H, 7.31. $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{2}$ (280.37) requires $\mathrm{C}, 81.40$; $\mathrm{H}, 7.19 \%$).

1-endo-2-endo-dihydroxy-6,13-dimethoxy[2.3]metacyclophane 5a: Colourless prisms (from petroleum ether), m.p. $218-219^{\circ} \mathrm{C}$; $v_{\text {max }}$ $(\mathrm{KBr}) / \mathrm{cm}^{-1} 3563,3327(\mathrm{OH}), 2941,1608,1502,1244,1128,1027$, 825,$615 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.80-1.95\left(2 \mathrm{H}\right.$, broad s, $\left.\mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right)$, 1.98-2.12 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}$), 2.75 ($2 \mathrm{H}, \mathrm{s}, \mathrm{OH}$), 2.94-3.05 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right), 3.82$ ($6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 4.34 ($2 \mathrm{H}, \mathrm{s}, \mathrm{CH}$), $4.99(2 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{Ar} H), 6.80(2 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{Ar} H), 7.39$ $(2 \mathrm{H}, \mathrm{dd}, J=2.4,7.8 \mathrm{~Hz}, \mathrm{ArH}) ; m / z: 314\left(\mathrm{M}^{+}\right)$(Found C, $72.53 ; \mathrm{H}$, 7.06. $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{4}(314.38)$ requires $\left.\mathrm{C}, 72.59 ; \mathrm{H}, 7.05 \%\right)$.

Similarly, compounds $\mathbf{4 b}$ and $\mathbf{5 b}$ were prepared in the same manner as described above in 36 and 53\% yields, respectively.
6,14-Dimethoxy[2.4]metacyclophan-1-ene 4b: Colourless prisms (from methanol), m.p. $117-119^{\circ} \mathrm{C} ; \mathrm{v}_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2954,2912,2835$, $1500,1263,1245,1116,1029,824 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.18-1.32(2 \mathrm{H}, \mathrm{m}$, $\mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}$), $1.52-1.68\left(2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right.$), 2.23-2.38 (2 H , broad s, $\mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}$), 2.75-2.93 (2 H , broad s, $\left.\mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right), 3.81(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.39(2 \mathrm{H}, \mathrm{s}, \mathrm{CH})$, $6.77(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{Ar} H), 6.98(2 \mathrm{H}, \mathrm{dd}, J=2.4,8.2 \mathrm{~Hz}, \mathrm{Ar} H)$, $7.55(2 \mathrm{H}, \mathrm{d}, J=2.4, \mathrm{Ar} H) ; m / z: 294\left(\mathrm{M}^{+}\right)$(Found C, 81.69; H, 7.53. $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{2}$ (294.39) requires C, $81.60 ; \mathrm{H}, 7.53 \%$).

1-endo-2-endo-Dihydroxy-6,14-dimethoxy[2.4]metacyclophane 5b: Colourless needles (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), m.p. $218-219^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{KBr}) /$ $\mathrm{cm}^{-1} 35583386(\mathrm{OH}), 2931,2863,1250,1182,1111,1079,1056$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ 0.75-1.68 (2 H , broad s, $\mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}$), $1.41-$ 1.65 (2 H , broad s, $\mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}$), $2.09-2.38$ (2 H , broad s, ArCH $\left.\mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right), 2.85(2 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 2.72-3.10(2 \mathrm{H}$, broad s,
$\left.\mathrm{ArCH} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right), 3.82(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.34(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 5.78$ $(2 \mathrm{H}, \operatorname{broad} \mathrm{s}, \operatorname{Ar} H), 6.90(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{Ar} H), 7.56(2 \mathrm{H}$, broad d, ArH); m/z: 314 (M ${ }^{+}$) (Found C, 73.03; H, 7.23. $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{4}$ (328.41) requires $\mathrm{C}, 73.15 ; \mathrm{H}, 7.37 \%)$.

Oxidation of 5a with PCC: To a solution of $\mathbf{5 a}(100 \mathrm{mg}, 0.32 \mathrm{mmol})$ and acetone $\left(5 \mathrm{~cm}^{3}\right)$ was added PCC $(157 \mathrm{mg}, 0.73 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature for 24 h . The reaction mixture was filtered and the filtrate extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(3 \times 10 \mathrm{~cm}^{3}\right)$. The extract was dried over anhydrous sodium sulfate and concentrated. The residue was subjected to silica-gel (Wako, C-300; $100 \mathrm{~g})$ column chromatography using as eluent benzene to give dicarboxylic acid (8a) ($105 \mathrm{mg}, 95 \%$) as a colourless solid. Recrystallisation from benzene afforded 8a as colourless prisms, m.p. $241-242^{\circ} \mathrm{C} ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}: 3410-2965(\mathrm{OH}), 1679(\mathrm{C}=\mathrm{O}), 1605$, $1502,1447,1306,1251,722,632 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right): 1.74-1.88(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $2.55-2.68\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.83(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $7.02(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar} H), 7.71(2 \mathrm{H}, \mathrm{d}, J=1.0 \mathrm{~Hz}, \mathrm{Ar} H), 7.82$ $(2 \mathrm{H}, \mathrm{dd}, J=8.7,1.0 \mathrm{~Hz}), 12.50(2 \mathrm{H}, \mathrm{s}, \mathrm{OH}) ; m / z: 344\left(\mathrm{M}^{+}\right)$(Found C, 66.39; H, 5.897. $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{6}$ (344.37) requires C, 66.27; $\mathrm{H}, 5.85 \%$).

Swern oxidation of 5 a: To a solution of of oxalyl chloride $\left(0.25 \mathrm{~cm}^{3}\right.$, $2.75 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(25.0 \mathrm{~cm}^{3}\right)$ was added DMSO $\left(0.126 \mathrm{~cm}^{3}\right.$, $1.65 \mathrm{mmol})$ and then $5 \mathrm{a}(110 \mathrm{mg}, 0.35 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1.0 \mathrm{~cm}^{3}\right)$ at $-30^{\circ} \mathrm{C}$ under nitrogen. After the reaction mixture had been stirred at $-30^{\circ} \mathrm{C}$ for 1 h , triethylamine ($380 \mathrm{mg}, 3.75 \mathrm{mmol}$) was added. The temperature of the reaction mixture was maintained at $-30^{\circ} \mathrm{C}$ for 30 min . under nitrogen, then allowed to warm to room temp. and stirred for an additional 1 h . Then, water $\left(10 \mathrm{~cm}^{3}\right)$ was added and the reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 10 \mathrm{~cm}^{3}\right)$. The dichloromethane solution was washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in vacuum to a residue. ${ }^{1} \mathrm{H}$ NMR spectrum of this oil was in accord with its being a mixture of three components, 5a, 6a, and $\mathbf{8 a}$ in the ratio of 50:30:20.

6a: $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right): 1.67-1.85\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.00-2.14(2 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 2.85-3.00 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 3.75 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $3.88(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.89(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 4.66(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 5.05,5.55(2 \mathrm{H}$, each d, $\left.J=1.0 \mathrm{~Hz}, \mathrm{Ar} H, H_{8,17}\right), 6.65,6.85(2 \mathrm{H}$, each d, $J=8.3 \mathrm{~Hz}$, $\left.\mathrm{Ar} H, H_{5,14}\right), 7.35,7.65\left(2 \mathrm{H}\right.$, each dd, $\left.J=1.0,8.3 \mathrm{~Hz}, \mathrm{Ar} H, H_{4,15}\right)$.

Albright-Goldman oxidation of 5 a: To a solution of acetic anhydride $\left(0.6 \mathrm{~cm}^{3}\right)$ and $5 \mathrm{a}(110 \mathrm{mg}, 0.35 \mathrm{mmol})$ was added DMSO $\left(0.9 \mathrm{~cm}^{3}\right.$, 12.6 mmol) at room temperature. After the reaction mixture had been stirred at room temperature for 20 h , ethanol $\left(0.5 \mathrm{~cm}^{3}\right)$ and triethylamine $\left(2 \mathrm{~cm}^{3}, 14.2 \mathrm{mmol}\right)$ was added and stirred for an additional 30 min . Then, water $\left(5 \mathrm{~cm}^{3}\right)$ was added and the reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 5 \mathrm{~cm}^{3}\right)$. The dichloromethane solution was washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in vacuum to a residue. ${ }^{1} \mathrm{H}$ NMR spectrum of this oil was in accord with its being a mixture of three components, 5a and $7 \mathbf{a}$ in the ratio of $35: 65$, which was crystallised by adding a small amount of hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 5: 1$ to give a pale yellow solid. The solid was washed with hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 10: 1$ to afford crude 6,13-dimethoxy[2.3]metacyclophane-1,2-dione 7a in $38 \mathrm{mg}(35 \%)$ as pale yellow solid; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}: 1685(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}$ $\left(\mathrm{CDCl}_{3}\right): 1.80\left(2 \mathrm{H}\right.$, broad s, $\left.\mathrm{CH}_{2}\right), 2.0-2.4\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.97(6 \mathrm{H}, \mathrm{s}$, $O M e), 6.12\left(2 \mathrm{H}, \mathrm{d}, J=1.0 \mathrm{~Hz}, \mathrm{Ar} H_{\mathrm{A}}\right), 6.92\left(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{Ar} \mathrm{H}_{\mathrm{C}}\right)$, $7.84\left(2 \mathrm{H}, \mathrm{dd}, J=1.0,8.3 \mathrm{~Hz}, \mathrm{ArH}_{\mathrm{B}}\right) ; m / z: 310\left(\mathrm{M}^{+}\right)$.

However, attempted isolation of 7a pure failed. Thus, diketone $7 \mathbf{a}$ was found to be quite labile under treatment by silica gel column chromatrography and on refluxing in toluene to afford dicarboxylic acid 8a in quantitative yield as colourless solid.

Trapping reaction of $7 \mathbf{a}$ with o-phenylenediamine: To a solution of crude $7 \mathbf{a}(10.6 \mathrm{mg}, 0.034 \mathrm{mmol})$ in ethanol $\left(10 \mathrm{~cm}^{3}\right)$ was added o-phenylenediamine ($3.7 \mathrm{mg}, 0.034 \mathrm{mmol}$) at room temperature. After the reaction mixture had been stirred at room temperature for 24 h , the solvent was evaporated in vacuum to leave a residue. The residue was washed successively with 10% aqueous hydrochloric acid, water, and ethanol to afford 9 a ($13 \mathrm{mg}, 100 \%$) as a brown solid, m.p. $>300{ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right): 1.88\left(2 \mathrm{H}\right.$, broad s, $\left.\mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right), 2.0(2 \mathrm{H}$, broad s, $\mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}$), $3.00\left(2 \mathrm{H}\right.$, broad s, $\mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}$), $3.90(6 \mathrm{H}, \mathrm{s}, O M e), 5.95\left(2 \mathrm{H}, \mathrm{d}, J=1.0 \mathrm{~Hz}, \mathrm{Ar} H, H_{8.17}\right), 6.82(2 \mathrm{H}, \mathrm{d}$, $\left.J=8.3 \mathrm{~Hz}, \mathrm{Ar} H, H_{5,14}\right), 7.53\left(2 \mathrm{H}, \mathrm{dd}, J=1.0,8.3 \mathrm{~Hz}, \mathrm{Ar} H, H_{4,15}\right)$, $7.65(2 \mathrm{H}, \mathrm{dd}, J=3.4,6.3 \mathrm{~Hz}, \mathrm{Ar} H)$ and $8.06(2 \mathrm{H}, \mathrm{dd}, J=3.4,6.3 \mathrm{~Hz}$, $\mathrm{Ar} H$); $m / z: 382\left(\mathrm{M}^{+}\right)$(Found C, 78.25; H, 5.93; N, 7.38. $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$ (382.47) requires C, 78.51 ; H, $5.8 ; \mathrm{N}, 7.32 \%$).

Albright-Goldman oxidation of $\mathbf{5 b}$: To a solution of acetic anhydride ($2.5 \mathrm{~cm}^{3}$) and $\mathbf{5 b}(440 \mathrm{mg}, 1.34 \mathrm{mmol})$ was added DMSO $\left(3.78 \mathrm{~cm}^{3}, 53.2 \mathrm{mmol}\right)$ at room temperature. After the reaction mixture had been stirred at room temperature for 20 h , ethanol $\left(2 \mathrm{~cm}^{3}\right)$ and triethylamine ($8.4 \mathrm{~cm}^{3}, 60 \mathrm{mmol}$) was added and stirred for an additional 30 min . Then, water $\left(10 \mathrm{~cm}^{3}\right)$ was added and the reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 10 \mathrm{~cm}^{3}\right)$.

The dichloromethane solution was washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in vacuum to a residue. The residue was crystallised by adding a small amount of hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 5: 1$ to give a yellow solid. Recrystallisation from hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 10: 1$ afforded 6,14-dimethoxy[2.4]metacyclophane-1,2-dione 7b (265 mg, 61\%) as yellow prisms, m.p. $182^{\circ} \mathrm{C} ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}: 1667(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}$ $\left(\mathrm{CDCl}_{3}\right): 1.13\left(2 \mathrm{H}\right.$, broad s, $\left.\mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right), 1.66(2 \mathrm{H}$, broad s, $\mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}$), $2.32\left(2 \mathrm{H}\right.$, broad s, $\left.\mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right)$, 2.92 (2 H , broad s, $\mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}$), 3.95 ($6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 7.01 $\left(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar} H_{\mathrm{C}}\right), 7.51\left(2 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{ArH}_{\mathrm{A}}\right), 8.18(2 \mathrm{H}$, dd, $J=2.4,8.7 \mathrm{~Hz}, \mathrm{ArH}_{\mathrm{B}}$); $m / z: 324\left(\mathrm{M}^{+}\right)$. (Found C, 73.93; H, 6.17. $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{4}(324.37)$ requires $\left.\mathrm{C}, 74.06 ; \mathrm{H}, 6.21 \%\right)$.

Similarly, compound $\mathbf{9 b}$ was prepared in 100% yield.
Compound 9b was obtained as yellow prisms (hexane), m.p. 262$263^{\circ} \mathrm{C} ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}: 1602,1500,1342,1292,1118,761 ; \delta_{\mathrm{H}}$ $\left(\mathrm{CDCl}_{3}\right): 1.18-1.21\left(4 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right), 2.56(4 \mathrm{H}$, broad $\left.\mathrm{s}, \mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right), 3.80(6 \mathrm{H}, \mathrm{s}$, OMe), $6.96(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}$, $\left.\mathrm{Ar} H, H_{5.15}\right), 6.97\left(2 \mathrm{H}, \mathrm{d}, J=2.2, \mathrm{Ar} H, H_{8,18}\right), 7.64(2 \mathrm{H}, \mathrm{dd} J=3.4$, $6.3 \mathrm{~Hz}, \operatorname{ArH}), 7.78\left(2 \mathrm{H}, \mathrm{d}, J=2.2,8.2 \mathrm{~Hz}, \mathrm{ArH}, H_{4,16}\right), 8.09(2 \mathrm{H}, \mathrm{dd}$, $J=3.4,6.3 \mathrm{~Hz}, \mathrm{Ar} H$); m/z: $396\left(\mathrm{M}^{+}\right)$(Found C, $78.50 ; \mathrm{H}, 6.14 ; \mathrm{N}$, 7.13. $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{~N}_{2}$ (396.49) requires $\left.\mathrm{C}, 78.76 ; \mathrm{H}, 6.10 ; \mathrm{N}, 7.07 \%\right)$.

Received 8 May 2008; accepted 25 June 2008

Paper 08/5269 doi: 10.3184/030823408X338701
Published online: 26 August 2008

References

1 T. Saisyo, M. Shiino, J. Hu and T. Yamato, J. Chem. Res., 2007, 691.
R.W. Griffin, J. Chem. Rev., 1963, 63, 45.
D.J. Cram, Acc. Chem. Res., 1971, 4, 204.
C.J. Brown, J. Chem. Soc., 1953, 3278.
S. Akabori, T. Sato and K. Hata, J. Org. Chem., 1968, 33, 3277
T. Sato, S. Akabori, M. Kainosho and K. Hata, Bull. Chem. Soc. Jpn., 1966, 39, 856.
7 T. Sato, S. Akabori, M. Kainosho and K. Hata, Bull. Chem. Soc. Jpn., 1968, 41, 218.
8 R.W. Griffin, Jr., R.W. Baughman and C.E. Ramey, Tetrahedron Lett., 1968, 5419.
9 H.W. Gschwend, J. Am. Chem. Soc., 1972, 94, 8430.
10 W.S. Lindsey, P. Stokes, L.G. Humber and V. Boekelheide, J. Am. Chem. Soc., 1961, 83, 943.
11 B.H. Smith. Bridged Aromatic Compounds. Academic Press Inc., New York, N. Y., 1964.
12 R.E. Singler and D.J. Cram, J. Am. Chem. Soc., 1972, 94, 3512.
13 M. Tashiro and T. Yamato, J. Org. Chem., 1982, 46, 1543.
14 M. Tashiro and T. Yamato, J. Am. Chem. Soc., 1982, 104, 3701.
15 T. Yamato, J. Matsumoto, S. Ide, K. Suehıro, K. Kobayashi and M. Tashiro, Chem. Ber., 1993, 126, 447.

16 T. Yamato, M. Sato, K. Noda, J. Matsumoto and M. Tashiro, J. Chem. Res. (S), 1993, 394

17 T. Yamato, K. Fujita, S. Ide and Y. Nagano, J. Chem. Res. (S), 1997.
18 J.E. McMurry, M.P. Fleming, K.L. Kees and L.R. Krepski, J. Org. Chem., 1978, 43, 3255.
19 J.E. McMurry, Acct. Chem. Res., 1983, 16, 405.
20 J.E. McMurry, G.J. Haley, J.R. Matz, J.C. Clardy and G.V. Duyne, J. Am. Chem. Soc., 1984, 106, 5018.
21 J.E. McMurry, Chem. Rev., 1989, 89, 1513.
22 R.H. Mitchell and S.A. Weerawarna, Tetrahedron Lett., 1986, 27, 453.
23 D. Tanner and O. Wennerström, Acta Chem. Scand., Ser. B., 1983, 37, 693.
24 H. Hopf and C. Mlynek, J. Org. Chem., 1990, 55, 1361.
25 H.-F. Grützmacher and E. Neumann, Chem. Ber., 1993, 126, 1495.
26 J.D. Albright and L. Goldman, J. Am. Chem. Soc., 1967, 89, 2416.
27 M. Tashiro and T. Yamato, Synthesis, 1981, 435.
28 T. Yamato, J. Matsumoto, K. Tokuhisa, K. Tsuji, K. Suehiro and M. Tashiro, J. Chem. Soc., Perkin Trans. 1, 1992, 2675.

29 T. Yamato, A. Miyazawa and M. Tashiro, J. Chem. Soc., Perkin Trans. 1, 1993, 3127.
30 T. Yamato, J. Matsumoto, K. Tokuhisa, K. Suehiro and M. Tashiro, Chem. Ber. 1992, 125, 2443.
31 T. Yamato, Y. Saruwatari, L.K. Doamekpor, K. Hasegawa and M. Koike, Chem. Ber., 1993, 126, 2501.
32 T. Yamato, K. Fujita, K. Futatsuki and H. Tsuzuki, Can. J. Chem., 2000, 78, 1089.
33 T. Yamato, K. Fujita, T. Abe and H. Tsuzuki, New J. Chem., 2001, 25, 728.
34 T. Yamato, S. Miyamoto, T. Hironaka and Y. Miura, Org. Lett., 2005, 7, 3.
35 Cyclophanes (Eds.: P.M. Keehn and S.M. Rosenfield), Academic Press New York, vol. 1\&2, 1983.
36 F. Vögtle, Cyclophane chemistry, Wiley: Chichester, 1993.
37 M. Tashiro and T. Yamato, J. Org. Chem., 1981, 46, 1543.
38 M. Tashiro and T. Yamato, J. Org. Chem., 1985, 50, 2939.
39 A.J. Mancuso, S.L. Huang and D. Swern, J. Org. Chem., 1978, 43, 2480.
40 R.E. Singer and D.J. Cram, J. Am. Chem. Soc., 1971, 93, 4443.
41 D.J. Cram, R.B. Hornby, E.A. Truesdale, H.J. Reich, M.H. Delton and J.M. Cram, Tetrahedron, 1977, 30, 1757.

[^0]: * Correspondent. E-mail: yamatot@cc.saga-u.ac.jp

